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Extended thermodynamics (ET) of degree r for a one-dimensional rarefied gas 
based, by definition, on a finite set A r =  {a ~ a2,..., a r} of the first r -  1 (3 ~<r) 
direct internal moments of the one-point distribution function f is carefully 
investigated. With the aid of the second axiom of thermodynamics, the new 
representation for f,  depending in a local and nonlinear way on A r, is explicitly 
derived. It is demonstrated that in ET of degree r an infinite sequence 
{ b e + 1, b r + 2..  } of higher order Hermite coefficients, which normally drops out of 
Grad's proposition for f fashioned by mathematical apparatus such as the 
Hermite polynomials, cannot be considered negligible in the case when 
nonlinear constitutive functions are established. Using Ma's kinetic equation 
corresponding to a one-dimensional rarefied gas as well as the generalized 
representation for f ,  collision productions in the nonconservative moment 
equations are then calculated for a special choice of the rate of collisions 
between particles. 

KEY W O R D S :  Extended thermodynamics (ET); one-dimensional rarefied 
gases; Ma's kinetic equation; hierarchy of moment equations; truncation of the 
hierarchy; Grad's moment procedure and its generalization. 

1. I N T R O D U C T I O N  

Extended thermodynamics (ET) of rarefied gases, which takes as indepen- 
dent state variables the slow (conservative) quantities plus the fast dis- 
sipative fluxes, has been a subject of considerable interest/1~4) In Grad's 
pioneering work (5'6) a variety of problems were considered--kinetic theory 
with the one-point distribution function f expanded in terms of Hermite 
polynomials, (7) hydrodynamics, ET--as well as a discussion of how these 
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somewhat different topics complement each other to make up the 
rudiments of a well-rounded and unified theory. 

Nothing can be more illuminating for ET than a reliable relevant 
example from the kinetic theory of even a highly simplified model. With 
this remark in mind, our attention will be directed more particularly to 
the derivation of extended phenomenological theories within the 
framework of a restricted class of kinetic equations for one-dimensional 
rarefied gases--Ma's kinetic equation, (8) for instance. 

In the paper we proceed as follows. On the basis of a suitable 
contraction of the kinetic equation(s), we arrive in Section 2 at the system 
of balance equations for a macroscopic velocity v and a finite set 
A r = {a ~ a2,..., a r } of the first r -  1 (3 ~< r) direct internal moments of f It 
can readily be verified that the above system of balance equations never 
closes on itself, so that we must supplement it by constitutive relations 
constructed in full harmony with the principle of entropy growth. (9) 

To this end, given the collision productions P " ( f )  (3 ~< n ~< r) on the 
rhs of the deduced equations of transfer, their explicit dependence upon the 
distribution function suggests first of all Grad's expansion (5"6) of f about a 
Maxwellian in terms of a complete set of functions, which are taken to be 
one-dimensional Hermite polynomials B m (3 ~< m). (7~ Elementary inspection 
shows that f involves time (t) and space (x) through v, the two conserved 
moments a ~ a 2 in the local Maxwellian, and the Hermite expansion coef- 
ficients b m (3 ~<m). (5'6) For  the convenience of the reader, these standard 
problems (5"6) are reconsidered in Section 2 as well. 

On transforming the coupled hierarchy of equations of transfer for the 
state variables A r of ET of degree r into the thermomechanical system of 
field equations, we provide a means of singling out appropriate constitutive 
relations for the flux moment a r+l in the rth hierarchy equation and an 
infinite sequence of Hermite coefficients in P". More specifically, the con- 
stitutive functions for excessive unknowns are characterized in the most 
apparent way by their local and generally nonlinear dependence upon the 
state variables A r (Sections 3.1 and 3.2). 2 

In Sections 3 and 4 the proposed theory affords an example of how to 
reduce the generality of constitutive assumptions to special ones by 
demanding their consistency with the second axiom of thermodynamics 
formulated in the Liu-Miiller spirit ~2'11) on one hand and with the fixed 
class of kinetic equations for one-dimensional rarefied gases on the other. A 
full list of helpful formulas applicable for the investigations of Section 4.2 is 
summarized, for the sake of simplicity, in an Appendix. 

2Due to the local constitutive assumption (LCA), the principle of material frame 
indifference (9,1~ does not permit v to play the role of a constitutive variable. 
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Since ET of isotropic systems, when it is reasonable combined with 
kinetic arguments, imposes sufficiently stringent restrictions upon the 
variety of constitutive fields so as to determine them explicitly, actual com- 
putation of the higher order Hermite coefficients {b r + 1, br+ 2..  } in terms of 
A r leads automatically to a new moment representation for f It can be 
compared and contrasted, if required, with the older one, (5,6) also fashioned 
by mathematical apparatus such as the Hermite polynomials/7) Different 
but interrelated forms of the generalized representation are written down in 
Section 5.1 and utilized (Section 5.2) in order to test independently the 
expression for the entropy production a previously deduced on the grounds 
of macroscopic arguments only (Section 3.1). 

In this context, one important remark is of interest. Because, regard- 
less of the collision integral in the kinetic equation for a rarefied gas, we 
shall always end up with the same one-point distribution function 
generating field equations of ET of degree r, the deduced moment represen- 
tation regarding f can never be interpreted in this work as a solution-- 
exact or approximate--to the kinetic equation. 

In the treatment of ET of degree r, the dominant role of 
{b r+l, br+2,...} in constructing, from the kinetic point of view, nonlinear 
thermodynamic theories is also carefully recognized (Sections 3.2 and 5.1). 
Consequently, the excessive higher order coefficients {b r+ 1, br+2,...} can be 
omitted, as originally in Grad's approach, ~5'6) only in the simplest case of 
linear ET. This fact constitutes the essential result of the work. 

Using Ma's kinetic equation (8) (Section 6.1) and the generalized 
representation for f ,  we then calculate the collision productions P" in the 
nonconservative moment equations for a special choice of the rate of 
collisions between particles; for more details on this subject, see 
Section 62. 

One of the main advantages to be gained by considering one-dimen- 
sional rarefied gases is an immediate simplification of mathematical details 
without significantly affecting the basic idea. In passing, the fruitfulness of 
taking ET of arbitrary order results surprisingly in the additional com- 
patibility conditions between ET of degree r and that of degree r + 1 ; they 
are of interest, as Sections 3.3 and 4.2 demonstrate. 

All results proposed can be treated as formally exact. 

2. AN EQUATION OF M O T I O N  FOR f A N D  ITS FINITE 
H I E R A R C H Y  OF M O M E N T  EQUATIONS 

Let us consider a one-dimensional rarefied gas for which each 
molecule of unit mass is subject to an external force K; K may be a 
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function of position x and time t, but not of momentum 2. We start with a 
kinetic description of the gas by an equation of change 

at f  +Vx2f + g;Kf=J( f )  (2.1) 

for the one-point distribution function (df) f(2,  x, t), where J(f) is the 
collision integral with the following elementary properties: 

f d2 J(f) l n [ C f ]  ~< 0 (2.2) 

for Y()~)=1, ). 22 (2.3) 

Otherwise, no additional information concerning J(f) is required at 
present. 3 

Obviously, Eqs. (2.2)-(2.3) lead to the familiar local entropy 
inequality 

O,h + Vx(hv + ,1~) = cr >~ 0 (2.4) 

with the standard kinetic expressions 

h= - f d 2 f l n [ C f ] ,  qs= - fd2~ f ln[Cf ] ,  2 = 2 - v  (2.5) 

a= - f  d2J(f)ln[Cf], v=f  d22f/fd2 f (2.6) 

for the entropy density h, the entropy flux q~, the entropy production a, 
and the macroscopic velocity v. 

The best of several starting points (1214) in forming the various 
phenomenological theories framed by the kinetic equation (2.1) is that 
initiated by defining the direct internal moments of the df, 

a=(x,t)=fd2~f(2, x,t), n 6 N o \ { 1  }, ~ o =  {0,1,...} (2.7) 

On the basis of (2.7) and (2.1), we easily arrive at the system 

na n- 1 

Ota"+Vx(a"v+an+L)+na'~Vx v a o Vxa2=pn(f) (2.8a) 

3 C is a certain constant of no importance in our further considerations. 
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1 2 O,v + v Vxv +-~-d Vxa - - K = 0  (2.8b) 

a - l = O ,  a '=O,  ns  INo\{1}, n~r, 3<~r (2.8c) 

of balance equations for A r= {a ~ a2,..., a r} and v, where the quantities 

pn(f) = f d)~ ~nj(f) (2.9) 

(depending on x and t through the df) represent 
in the nonconservative moment equations; due to 
conditions 

p0 = 0, p2 = 0 

collision productions 
(2.3), the necessary 

(2.10) 

are automatically fulfilled. 
Such balance equations, which may alternatively be termed equations 

of transfer, are of interest in this work, both because they constitute the 
leading postulates of ET of degree r, and also because, as will later appear, 
their specific structure characterizing one-dimensional rarefied gases, if 
appropriately combined with the principle of entropy growth, (9) determines 
the df explicitly. 

A guide for eliminating f from the rhs of (2.8a) and allowing a treat- 
ment in the finite hierarchy (of the first r equations of transfer) of the fields 
that depend on space and time only, as traditionally in continuum physics, 
was first sketched by Grad35'6~ His method, which we adopt in this work, 
is based from the outset upon an expansion 

l ] f(~, X, t) =fM(~,  X, t) 1 -~ n~=3 n~ " bn(x, t) Bn(1) (2.11) 

of the df around a local Maxwellian 

fM=(27z) l/2c~a~189 ~=(a~ 1/2, ~=c~[ (2.12) 

in terms of the orthonormal Hermite polynomials 

Bn(2) = (2 - V~)"o 1 (2.13) 

that, according to Eq. (2.11), are multiplied by the so-called Hermite 
expansion coefficients 

b"= ~ f d2 f(2, x, t) Bn(~), 3~<n (2.14) 
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In this context, supplementary [with respect to (2.14)] notation is 
also introduced, 

b ~ = a ~ b 1 =0 ,  b 2 = a 2 (2.15) 

Substituting (2.11) into P " ( f )  in (2.8a), we are justified in doing the 
useful transformation 

where, by definition, 

p n ( f )  =~ p,,(H~_l iH~rl H ~ )  (2.16) 

n n = { b m + l ,  bm+2,...,b n } (2.17) 

3. THE ENTROPY INEQUALITY IN THE LlU-MOLLER SPIRIT 

3.1. Lagrange Mult ipl iers 

In neither case can the system (2.8) of balance equations serve as field 
equations for v and the internal state variables A', because excessive quan- 
tities have appeared, namely the flux moment a r+l in the rth hierarchy 
equation and, as the transformation rule (2.16) indicates, the Hermite coef- 
ficients b m (m ~ [~0). Consequently, these unknowns must be considered as 
constitutive quantities 

ar+l=ar+l(A~), bm=bm(Ar), mEr~ o (3.1) 

The local constitutive assumption (LCA) that we adopt in (3.1) 
implies that a" +1 and b m depend at one point and time upon the values of 
A r at that point and time, generally in a nonlinear way. In passing, observe 
that v drops out of (3.1), because of the LCA and the principle of material 
frame indifference/9) 

Since in rational thermodynamics ~9'15) the entropy density h and the 
entropy flux q~ are derivable from A" in a materially dependent manner, the 
LCA attached to h and q~ suggests immediately the so-called auxiliary 
constitutive relations 

h = h(Ar),  # = 45(A r) (3.2) 

The basic and auxiliary constitutive functions (3.1)-(3.2) should be such as 
to ensure that the entropy inequality (2.4) is satisfied in every admissible 
thermodynamic process, i.e., every solution to the field equations com- 
patible with constitutive assumptions. 
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Due to the fact that Eqs. (2.8a) form constraints for A r, o n e  can get 
rid of those constraints by the use of Lagrange multipliers A~ (0 ~ n ~ r, 
n ~ 1); they depend on A ~ as well, 4 

Ar~ = A~(A r) (3.3) 

Liu has shown (16) that the new [with respect to (2.4)] inequality 

r n ath+Vx(hv+crp ) -  ~ 3~ ata + V x ( a " v + a " + l ) + n a " V x  v 
n=O k 

na n -  1 ] 
aO V xa2 - p " =a~>0, A~=0 (3.4) 

holds for all fields A r. Now, (3.4) may be written in an essentially different 
form as 

[h- ~ (k+l)~;a ~] Vxv 
k=O 

. = o  ~-3~  a,a"+ V\aa~ o/ 
0 ~  (~a r + l  ~ ,  a k 11 

- I - ~  - A t - 1  --Ar"~'L'~-n k=o k Ark a~ J Vxan 

+A~Pn}=a~>0,  Ar l  = 0  (3.5) 

where, by definition, fin,, is the Kronecker delta. According to Liu's 
theorem, (16) the space-time derivatives Vxv, O,a n, and Vx an can be chosen 
arbitrarily and independently of any other term in (3.5). With this in mind, 
it follows that the quantities in square brackets [ . . . ]  vanish, 

(?a n 

Oq5 

Oa n 

- - - A ~ = 0 ,  h -  ~ ( k + l ) A r k a k = O  
k=O 

~?a r + 1 ~, a e - 1 
r _ _ z ~ r  r - - - - d " - I  " Oa" +6,z kJ~--ff6----0- 

k = 0  

(3.6) 

(3.7) 

4 In order to avoid burdensome notation, and because it makes no changes in Eqs. (3.6) and 
(3.7), the Lagrange multiplier associated with Eq. (2.8b) does not appear in this work. 
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where O~n<<,r, n #  1, and the entropy inequality (3.5) reduces to the 
residual one 

r A,,P =a/>O (3.8) 
n = O  

Although the equalities just obtained have the effect of interrelating 
the basic and auxiliary constitutive representations for a r§ 1, h, ~, and A~, 
none of them yet furnishes what we really want, namely a reduction in the 
generality of the basic constitutive functions (3.1). Even more, since 
valuable information concerning bm(A r) is not directly derivable from 
(3.6)-(3.7)--these Hermite expansion coefficients simply do not occur 
there, but only indirectly through P" in the residual inequality (3.8)--the 
critical problem becomes one of extracting, possibly with the aid of 
supplementary ingredients in the theory, explicit knowledge of bm(A'). 

3.2. Const i tut ive  Assumptions in the Second-Order  Theory 

We now consider the two standard equalities in the theory of one- 
dimensional Hermite polynomials (7) as providing a tool for constructing 
b'(A r) = b" e H21, namely 

B'(~)= ~ x7~,~ ~ 
k ~ O  

2"= ~ Yf~Bk(2) 
k = 0  

n~N o 

(3.9a) 

(3.9b) 

(3.9c) 

n n m  X~,, Yk-  
0, 0 for n - k e 2 N o + l  

( -  1)('-k)/2 n! n! 
for n - k e 2 N  o 

k! ( n - k ) ! !  ' k! ( n - k ) ! !  

(3.1o) 

where 

(2n) ! !  = 2 ~  . . . . .  2n 

2No = {0, 2,...}, 2No+ 1 = {1, 3,...} 
(3.11) 

Substituting (3.9a) in (2.14) and (3.9b) in (2.7), also using the 
supplementary notation (2.15), one obtains for b" e H~_I 
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b ~= ~ x~a k 
k = O  

a ~= ~ Y~b k 
k = O  

n ~ N  o 

(3.12a) 

(3.12b) 

(3.12c) 
where 

1, 1 

x7~, y~=  0, 0 

a 0 ~ k ~  

a o 

for (n=O,k=O) or(n=2, k=2) 

for n = l o r k = l o r ( n = 2 ,  k = 0 )  

for 3~<nandkr  

(3.13) 

If, however, we have additional information that the first n Hermite 
coefficients b m can be transformed into the first n direct moments a m by a 
nonsingular linear transformation, the specific choice A r of the internal 
state variables loses its absolute importance, since then, roughly speaking, 
dependences of a r+l, b"eH~, A~ (O<.n<~r, n-~ 1), h, and ~b on bnEH21 
will interest us as well. 

It is, of course, possible to conceive of states of the gas slightly 
removed from local equilibrium. When this is done, the general constitutive 
representations (3.1b), (3.3), and (3.2) can be expanded in powers of the 
coefficients b"~ H~, which, by their very nature, vanish in the state of local 
equilibrium. The second-order representations can be written down easily 
and we obtain 

b n = ~ brk'"b~+ ~ ~ Ukmhr]nl~klnm~ u , r<n (3.14) 
k = 3  k ~ 3 m = 3  

k ~ 3  k = 3  m - 3  

O<<.n~r, n r  l (3.15) 

where we shall think of the coefficients b~ I" through A~,~ as parameters 
depending in general both on b ~  a ~ and b2= a 2. Obviously, as a result of 
(3.12a) and (3.14) for n = r + l ,  the constitutive function for the flux 
moment a r+l can be explicitly formulated, so that we obtain 

1 @ 1 k 1 a r + l  
= -  r+-----5 z., x~ + a +x--T; 5 b ~+1 (3.16) 

X r + l  k = O  r + l  
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In order to make (3.14)-(3.15) internally consistent with Eqs. 
(3.6)-(3.7), one must consider h and ~, which contain also the third-order 
terms in b n ~ H;, 

h=h~o+ ~ hrkbk+ ~ ~ h~k,,bkb m 
k = 3  k = 3  m = 3  

~kmpU ~ u 
k ~ 3  r n ~ 3  p = 3  

~--" ~ Orkbk'~ - ~ ~ ~3rkm bkbm 
k = 3  k = 3  m = 3  

-~-~ ~ ~ Air ]~k~mhP ( 3 . 1 8 )  �9 ~,krnp~ ~ 
k = 3  m = 3  p = 3  

At first sight, it would be stimulating to take full account of such a 
situation for which at the outset the coefficients b~ In in (3.14) are not equal 
to zero, but it has to be recognized that, in doing so, apparent discrepan- 
cies, which we want to avoid, with assumptions equivalent to those on 
which Grad's theory (5"6) is founded could not be eliminated. Indeed, in 
Grad's truncation procedure (5'6) b"~ H~  are considered to be negligible. It 
is then no surprise that in the remainder of the work we seek bT,~ in front of 
bkb m [-see Eq. (3.14)] under the natural assumption 

b; ~" = 0 (3.19) 

which puts the proposed theory in harmony with the older one. (5,6) 

3.3. Compat ib i l i ty  Condit ions 

In ET of degree n -  1 (r + 1 ~< n), the Hermite coefficient b n can be 
thought of as being the "first" excessive unknown 

b ~= ~ ~ b~,llnbkb m= b~km'l~bkb m 
k = 3  m = 3  k = 3  m = 3  

n - - I  n 1 n 1 
+ 2  ~ ~n-l[nhkl~mj_ n ~km ~ u . Z Z bkm '[nbkbm (3.20) 

k = 3  m~r+l k = r + l  m = r + l  

where the underlined expressions (UE) on the rhs of Eq. (3.20) will only be 
important for r + 1 < n, eventually giving rise to what we have previously 
called ET of degree r. s Consistent with this observation, we attempt to 

5 In obtaining the first underlined expression, we assume with no loss of generality that 
b~Z. 1 1 " = b ~  lln. 
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arrive at (3.14) supplemented by (3.19) once more by regarding in the 
second step b n- 1 as a constitutive quantity rather than an independent 
state variable, 

n - - 2  n - - 2  
bn-1---- E E ~t~n-21nkm lbkb'n (3.21) 

k = 3  m = 3  

according to the tenets of ET of degree n -  2. Obviously, we do this on the 
understanding that Eq. (3.21)--when substituted into (3.20)--does not 
contribute to 

n - - 2  n - - 2  

bn= E E b~cm 21"bkbm ( 3 . 2 2 )  

k = 3  r n ~ 3  

because potentially important terms appearing then in the UE are of third 
(fourth) order with respect to bm~ H~ -2. In the last n -  r step, we write 

b r+l = ~ ~, Ukm~rlr+lb~b m (3.23) 
k = 3  m = 3  

but this equality, due to arguments that in essence are exactly the same as 
those just formulated, does not contribute to 

b"= ~ ~ L..kmuhrlnt~k~mu (3.24) 
k = 3  m = 3  

as well. Finally, comparing (3.24) with the first expression on the rhs of 
(3.20), we obtain the important compatibility conditions 

b~ =l~"-ll"~km , 3<~k<~r, 3<~m<~r, r<n (3.25) 

between ET of degree r and that of degree n -  1. 
If a similar contraction of the level of thermodynamic description 

based on bm~ HL+~ j is carried out for h and qs, by projecting the results 
of ET of degree r + 1 into the space of the state variables bm@ Hr_l, the 
constitutive functions (3.17)-(3.18) are recovered, with the additional 
advantages as follows" 

h~+ 11,rlr+l r+l 1 "Jkrn -~ hkm 
Or+lb~+l + O~+ml r + l  

h~) + 1  = h~) ( 3 . 2 6 )  

h~, +1 =h~,  
3 ~ k ~< r (3.27) 

= h~:,,, t 3 ~< k ~< I" (3.28a) 

= ~ r  ~ 3 ~< rn ~< r (3.28b) 
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h r + l  l~rlr+l / a r + l  r 
" ' r+l (k~mp)  "{-'~kmp =hkmp, 

2q~;+ 1 hr] r+ l_ t .A~r+l__  r 
l(k~mp) " ~P'kmp - -  ~kmp~ i 

3 ~< k ~< r (3.29a) 
3 <~m<~r 
3 ~< p ~< r (3.29b) 

where round brackets A(k . . . .  p) enclosing a set of n indices represent sym- 
metrization of these indices, i.e., the sum of all permutations of the indices 
divided by n! (irrespective of whether or not they are distinct). 

Although the statements (3.14)-(3.18) and (3.25)-(3.29) remove, as 
tedious inspection shows, at least part of the difficulty in successfully 
analyzing the direct thermodynamic consequences (3.6)-(3.7), still one 
more fact (Section 4.1) is desired in order to get a manageable result. On 
the contrary, far from seeking to introduce and combine with Eqs. 
(3.6)-(3.7) compatibility conditions--as well as extra information like that 
in Section 4.1--the Liu-Miiller ET of degree 13 for actual (three-dimen- 
sional) rarefied gases makes use of macroscopic axioms alone. (2) 

4. C O N S T I T U T I V E  COEFFIC IENTS IN EXPLICIT F O R M  

4.1. Solutions for  h and �9 

Note that Eq. (2.11) can also be written as 

f = f M [ 1  + (~] +e~)]  

r n n e l =  ~.Fb B ,  e z-r- 
n ~ 3  n = r + l  

(4.1) 

(4.2) 

where the coefficients b" ( r < n )  are now given by (3.14) and (3.19). This 
form of (2.11) is particularly useful in calculating the characteristic element 

,~P[1 + (e~ + e~)] ln[1 + (e~ + e~)], p = 0 ,  1 (4.3) 

which one extracts easily from Eqs. (2.5). 
As far as the auxiliary constitutive functions (3.17)-(3.18) are concer- 

ned, in the neighborhood of local equilibrium, a valid approximation to 
(4.3) may be obtained by using in (2.5) the first three terms of the expan- 
sion of the logarithm. A rather lengthy resulting expression simplifies 
considerably when it is realized that either certain integrals on the rhs of 
the molecular formulas (2.5) for h and q~ vanish altogether due to the 
orthogonality properties of Hermite polynomials or, what is equally impor- 
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rant, they simply lose their further applicability due to an "unsuitable" 
occurrence of the higher order factors 

bkb m... b p, 3 < n 

n 

All this justifies the following sequence of transformations: 

1"[1 + (~ + ~ ) ]  In[1 + (~7 + ~ ) ]  

~ I " [ 1  + (~ + ~)][(~7 +~ )  

- -  I r 

~ I"[(~ + ~) + 1(,~ +~)= _~(~ + ~)3] 

1 p r r r r ~ [-(elel +2ele2) _~elel~l ] 1  r r r (4.4) 

in order to arrive, after a direct calculus, at 

h'km -- 

h~ = �89 ~ - a ~ In [(2rc) -1/2 ~aOC ], h~ = 0 (4.5) 

a o a o 

2k!  m!  ( B k B m ) '  h~,,,p - 6k!  m!  p!  ( B k B ' B P )  (4.6) 

and 

a o 

0f = ~ 6~3 

a 0 

2~k!  m!  
- -  [ ( B * + I B m ) + k ( B k - I B m ) ]  

a o 

~rkmp = 6~k ! m ! p ! [(BK+IBmBP) +k(Bk-lBmBp)] 

a ~  1 . +  
" ~  L.~. (~rk brm[; 1 Al - _ ~  (~rm brp[kr + l di - L ~ [~rlr + l -[ �9 p !  vw~xm J 

(4.7) 

(4.8) 

where, by definition, 

( B k B  m . . .  B p) = (2z~)- 1/2 f d2 exp(- �89  2) Bk(2) Brn(l~) . . .  BP(2) (4.9) 

The remaining task is then, aside from the natural question of how the 
specific numbers b2~ § should be calculated, and whether or not Eqs. 
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(3.6)-(3.7) impose sufficiently stringent restrictions upon them, to deter- 
mine the values of (BkBm) and (BkB~BP). It is possible to show that 

(BkBm> = k! 6k~ (4.10) 

(BkBmBp> = k! m! p! (4.11) 
[ (k+  m - p)/23! [(rn + p - k)/2]! [(p +k-rn)/2]! 

f o r k + m + p e 2 N o ,  k + m - p > ~ O , m + p - k > ~ O , p + k - m > > - O a n d  

(BkBmB p) = 0 (4.12) 

for other choices of the indices. 
Upon adopting (4.5)-(4.8), the compatibility conditions (3.26)-(3.29) 

are found to be satisfied automatically; hence only Eq. (3.25) exhibits its 
importance, as we shall soon see, in deriving the new moment represen- 
tation for f 

4.2. So lut ions  for A~, (O<~n<~r, n r  and b" ( r < n )  

So far, this work has discussed thermodynamic consequences of the 
local entropy inequality, which, technically speaking, do not require any 
knowledge of the assumptions of the second-order theory, except for the 
observation that the basic and auxiliary constitutive quantities (3.1a) and 
(3.2) are differentiable functions of A r. However, elementary appeal to Eqs. 
(3.14)-(3.18) and (4.5)-(4.8) and the transformation rules (3.12) shows that 
the thermodynamic relations (3.6)-(3.7) are not satisfied unless the coef- 
ficients of certain polynomials of second order in bins H r 6 which follow 2 '  

from inserting constitutive representations of Sections 3.2 and 4.1 into 
(3.6)-(3,7), vanish altogether. 

The exploitation of Eqs. (3.6)-(3.7) in this spirit is a very laborious 
process, so that we cannot hope to treat every detail of the problem. 
Nevertheless, in an Appendix we summarize briefly useful identities of 
interest in deriving the simple results regarding the Lagrange multipliers: 

A~ I~ = --1 --ln[(2n)-1/2 cm0C], A~) 12 = �89 (4.13) 

A~l"=O, 3<~n<~r (4.14) 

6 Since Eqs. (3.17)-(3.18) are given to within fourth-order terms, all contributions of higher 
than second order in b'~c H~ would not  be reliable. The reason for not  allowing third-order 
terms in (3.6)-(3.7) is that the reliable order of Oh/3a n and ~cb/Oa ~ has been lowered to 2 by 
differentiation with respect to a". 
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z~rk In  _ ~ n  

k! ~ Xp 6pk, p=, 

A r l n  _ _  p p k rn 
~km--2k!m I ~ X , ( B  B B ), 

" p = r t  

O ~ n ~ r ,  n r  

3 <~ k <~ r, 3 <~ m <~ r 

on the one hand and the excessive flux moment (ar+l ~=~ b r+ 1) 

1 b~lr+l__ (Br+lBkBm), 3<~k<~r, 3<~m<~r 
km 2k! m! 

(4.15) 

(4.16) 

(4.17) 

on the other. 
From the compatibility requirement (3.25), it is easy to show that 

1 b r l n - - - ( B n B k B m ) ,  r<n,  3<~k<~r, 3<<.m<~r (4.18) 
km 2k! m! 

b r l n  __ o for k + m < n k m  - -  v 

Hence 

(4.19) 

In this context, see Eqs. (4.11)-(4.12). 

5. THE NEW M O M E N T  REPRESENTATION FOR 
THE DISTRIBUTION FUNCTION 

5.1. The Two Interrelated Expressions for f 

With Eqs. (3.14), (3.19), (4.18), and (2.11), one obtains 

r 

= m = 3  n = r + l  
k !m!n !  

2 

(B"BkB ") b%"B"(1)] 

Hence, the quantity e; can be considered negligible, as in 
approach, (5'6~ only in the simplest case of linear ET of degree r. 

(5.1) 

Grad's 

8 2 2 / ; 4 8 / 3 - 4 - 3 0  
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On replacing (BnBkB m} by the identities (4.11)-(4.t2), we get the 
explicit result 

[ 
E m! ( s  ~ - -  k)! 

f = f M  l + ~ 3 1 b k B k +  ~1  E n / 2 ]  bkbn-kB.-zm 
= = k :  P2 0 

l r~' 2w2 b k b k g 2 k - 2 m  ] 
(5.2) 

-2k~p3  m=O m! ( k - m ) !  ( k - m ) ! ]  

where 

Pl = max(6, r + 1 ), wl = [(n - r - 1 )/2] (5.3a) 

p2 = max(3, n - r ) ,  w2= [ ( 2 k -  r -  1)/2] (5.3b) 

P3 = max(3, [-(r + 2)/2] ) (5.3c) 

By definition, the symbol In/2] denotes the integral part of n/2. 

5.2. On the Microscopic Origin of the Residual Inequality 

This section is devoted to the evaluation of the local entropy produc- 
tion 

We start with 

while 

a = - f d)L J ( f )  l n [ C f ]  (5.4) 

a = - f d2 J( f )  ln[1 + (e~ + e~)] 

- - f  ~ 8 1 9 1 )  ] ( 5 . 5 )  

Now, by (3.9a), ~ = ~ ,  (4.15), and (4.16), the quantity e~ is equal to 

-- ~ ~ A~'"bk~ " (5.6) 
n = O  k = 3  

E 2 - -  ~ c, .~ 
n-=O k ~ 3  m = 3  
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provided that we make use of the identity 

=n i+j=n p=i q=j 

Adopting (5.6)-(5.7), and remembering that W = ~ d 2 ~ ' J ( f ) ,  we 
arrive at the expression 

r n 0- = A n P  (5.9) 
n = 3  

which is in full harmony with the so-called residual inequality (3.8). Were 
this not the case, the derived moment representation (5.1), or, alternatively, 
(5.2) would not be correct. 

If the collision integral J ( f )  is explicitly specified as a functional of the 
df, then, since (5.2) allows a reliable evaluation of constitutive functions of 
thesecond-order  theory, one obtains constitutive relations for the collision 
productions P" in the following form: 

pn= ~ prklnbk_~ ~, ~ --kmPrJnhkhme" u , 3<<.n<~r ( 5 . 1 0 )  

k = 3  k = 3  m = 3  

Substituting (5.10) and (3.15) in (5.9) and rejecting the resulting terms 
that are of higher than third order in bmE Hr2, 7 w e  obtain for Eq. (5.9) 

a = 0-0 + al (5.11) 

where 

(TO ~ ~ ~ ~,, zJ~lnprlmnbkbm ( 5 . 1 2 )  

n = 3  k - 3  m = 3  

n = 3  k = 3  m = 3  p = 3  

The part 0-0 of 0- is required to be nonnegative for all possible choices 
of the values of b m ~ H~ (otherwise linear ET of degree r breaks down), but 
the local entropy inequality 0- = 0-0 + al ~> 0 may formally cease to be true 
when bm~H~ are suitably chosen. Fortunately, because the one-dimen- 
sional gas departs slightly from local equilibrium, as normally in the 
constitutive theory of second order - -and  indeed of arbitrary order- - the  
contribution 0" 1 to the entropy production 0- is small compared with that 

7 In the second-order theory, a can be evaluated to within the fourth-order terms in b m ~ H;. 
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due to "linear" effects. As a consequence,  the inequality a >~ 0 does not  lose 
its importance.  8 

Obvious as these facts are, they are sometimes disregarded in formal 
extensions of the range of validity of ET to far-from-equilibrium situations. 

6. EVALUATION OF THE COLLISION PRODUCTIONS 
P" (3~<n~<r) 

6.1. Ma's Collision Integral J(f) 

Ma's choice ~s) of the collision integral J(f)  can now be reconsidered. 
He took 

J(f)  =fffj'f d2' d2"dco do)' dco" ~(2 ,  2', )Y' L co, co', co") 

x [f(co)f(co')f(co")-f(2)f(2')f(2")] (6.1) 

N(2, 2', 2" L co, co', co") 

= F 6[). + 2' + 2" - c o -  co' - co"] 

X 15 [- 1(,~2 -}" /'t,'2 "1-/'{," 2 ) - -  1 (CO 2 -1- CO ' 2 -}- CO" 2 ) ] (6.2) 

In so doing, wherever the df in (6.1) occurs, it must  be evaluated at the 
same space-time point  (x, t). Here ~ is the rate of the collision 
2 + 2' + 2" +-+ co + co' + c0", which, as (6.2) indicates, satisfies momen tum 
and energy conservation. Generally,  F depends on 2, 2', 2", to, co', and co". 
The condit ion of undistinguishability of the particles implies that  F remains 
unaltered on all possible permutat ions  of (2, 2', 2") and (co, co', co"), respec- 
tively, and, in addition, on interchange (2, 2', 2") ~ (co, co', co"). 

In a fictitious three-dimensional  space of vectors (2,2 ' ,  2"), the 
principle of conservation of momen tum 

2 + 2 ' + 2 " = ~  (6.3) 

determines a plane and the principle of conservat ion of energy 

2 2 -1"- 2 '2 -'}- 2 "2 = 2# (6.4) 

8 Even more ,  the impor t an t  work  by Liu and  Miiller ~2) indicates tha t  b m ~ H~ m u s t  be small  
anyway,  independent  of whe ther  or  not  l inear ET is under  considera t ion,  due to the 
F r i ed r i chs -Lax  condi t ion  of hyperbolicity.  (17) 



On the Fundamentals of Extended Thermodynamics 831 

defines a spherical surface. The plane and the spherical surface have an 
intersection, which is a circle of radius 

p = (2g - ~2/3)1/2 (6.5) 

'~/x/3 is the distance from the plane to the origin and p can be interpreted 
as the energy in the center-of-mass frame. The energy-momentum conser- 
vation law demands that (2, 2', 2") and (co, co', co") be on the same circle 
characterized by (6.5). In other words, the two vectors (2, ~', 2") and 
(co, co', co') will uniquely be specified by (N, p) and the angles q~ and 0, 
respectively; q~ and 0 are measured along the circle. Now, draw a line from 
the center of the circle to the intersection of the plane and the 2 axis. 
Following Ma, (8) we choose this line as ~o = 0 (~, = 0). Then, a little algebra 
gives 

2 = ~/3  + p(2/3) 1/2 cos ~o 

2 ' =  ~/3  - p ( 1 / x / 6  ) cos ~o- p(1/x/2)sin ~o 

2 " =  ~/3  - p(1/~/6) cos <p + p(1/x/2 ) sin (p 

(6.6a) 

(6.6b) 

(6.6c) 

Replacing q~ by tp in (6.6), we immediately arrive at the transformation rule 
for (co, co', co"). 

Although, strictly speaking, F- -  F(p, (p, 0), we shall make the simplify- 
ing assumption that F =  F(p). 9 Even more, we postulate 

~C 4 

F--4rr2(67t)l/2exp[�89 0 < c ~ < l ,  0 < B  (6.7) 

where B and c are certain unspecified constants. Since the kinetic equation 
for a one-dimensional rarefied gas should serve some pedagogical purpose, 
as originally in the work by Ma, (s) we do not inquire as to whether there 
exists an interaction potential between particles producing (corresponding 
to) (6.7). 

6.2. The  Genera t ing  Funct ion  

On using Ma's collision integral (6.1)-(6.2) with F calculated from 
(6.7) and the definition (2.9) regarding the collision production P", as well 
as the series representation (2.11) for the df supplemented by Eqs. (3.14), 

9 In the work by Ma, (8) F is a constant independent of p. 
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(3.19), and the result (4.18), we find for the coefficients p~l~ and prln in 
~ k m  

(5.1o) 

P;i"=�89 3-" ~ y~RI~ (6.8) 
p=3  

P ~ = � 8 9  3 " Yp R[.~+ ~, . . q ~ . , j  (6.9) 
p=3  q = r + l  

where 
v = a~ 1/2 (6.10) 

and the dimensionless numbers R~ and RkP,, are given by 

C 4 
f d~ dp dq~ d~ R~ = 4n2(6n)V 2 k! 

f y)] x p e x p  -~  cp +-~-- BP(,~) 

x l - 3 B k ( c o )  - e k ( , l )  - 2~k(X')3 (6.11) 
C 4 

Rfm=4n2(6n)m k! m! f d~ dp dq~ dO 

•  (cpe +~-)]BP(2) 

• [3Bk(CO) B"(CO') -- Bk(2 ') Bm(),, ") 

- -  Bk()~) Bm(,~. ') - -  o k ( ) J )  o m ( ~ , ) ]  (6.12) 

For the convenience of the reader, the abbreviated integral 

f d~ dp d~o dqJ JV(~, p, ~o, ~0) 

is understood to be the multiple integral 

f + ~ fo+ ~ ~ ~ ~ d~ dp d~p dlp "/V ( ~' p' ~~ ~ o~ 

The procedure for obtaining (6.11)-(6.12) is compounded of two 
structurally different parts, one of which arises from transforming to 
(~, p, ~0, ~9) in place of (2, 2', 2", co, co', co") as variables of integration, 1~ 

1o This change of variables of integration is described by Ma. ~8> 
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and the second from replacing in the resulting integral p by (1/c~)p, ~ - v  
by (1/c0 ~ ,  ~ by ( l / s )2 ,  etc. Making the above scale transformation, we 
find that the dependence of the presently dimensionless velocities (2, 2', 2"), 
which occur in (6.11)-(6.12) through the Hermite polynomials B m, upon 
(~, p, q~) is identical with that in Eq. (6.6), except that the variables ~ and 
p are now dimensionless quantities. When the angle measured along the 
circle is chosen to be 0, an analogous argument obviously applies to the 
velocities (co, c~', co"). 

For many applications, the Hermite polynomials are derived by means 
of their generating function (18~ 

p~o ~.r BP(2) = exp(2T - 1~.2) = g(21 r) (6.13) 

Equation (6.13) implies that R~ divided by p! and RkP divided by p! are 
the coefficients of rPr 'k and rPr'kr "m, respectively, in the power series 
representations of 

C4 (. 

R(r, r ')  = 4~2(-~),/2 j d~ dp d~p dO 

• g(2 ,z) 

• E3g(colz') - 2g(2' [ r ') - g(2 ] v')] (6.14) 

and 
C 4 (, 

z") = J R(r, r', 4n2(6n)l/2 d~ dp dq~ d o 

• p exp [ --~ ( cp2 + -~) l g( 2 ] "c ) 

• [3g(co I r ')  g(co' I z") -- g(2'l r ')  g()/'l r") 

-g(2lr')g(2'lr")-g(2'l~')g(2lv")] (6.15) 

The direct method of performing the integrations over d~, dp, d~o, and 

f 
+oo  q 2  

- ~  d~ exp( _p~2 _ q~) = (rc/p)l/2 exp ~pp (6.16) 

1 6 2 
( + ~ d~ ~ exp( - p~2) i o ( ~ )  = ~P exp ~pp 
r 

(6.17) 

d0 in (6.14)-(6.15) rests essentially upon the following values of the definite 
integrals (19): 
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f0 d~ ~ e x p ( -  p~2) Io(6~) Io(gr = exp Io (6.18) 
\ 4p / ~pp 

Ij~ d~ exp(xl ~ sin 4) = 2r~Iol-(x~ x~) 1/2] (6,19) cos + x2 + 

where p > 0, x~ + x~ ~> 0, and Io(~ ) is the modified Bessel function of order 
zero. From Eqs. (6.16)-(6.19), we have the results for R(z,r ' )  and 

r qT"," R('c, "c, 

R(z,z')=c3exp[~Q(z2q--z'2)] 

-exp[(l+~O) z'r']-2exp(-~f2z'c')} (6.20, 

R(r,r, )=c  3exp f2(r 2+'c '2+r "2) 

• {3 exp I~ (rr' + ~" - (2r'r") ] 

x 10 I 2  z(z'2 + r"2 - z'r")l/2 j 

- e x p  - ~  ~(r~' + + r'~") 

31 r" 2r r ' ) l  
Lr '- + r '  - 

exp 

- exp ~z" f~(~' + r' 2rz')  (6.21) -5 
where 

12 = (1 - c)/c (6.22) 

The simplest possible assumption which suggests itself may be 
expressed by the statement that F in (6.7) does not depend on p,l~ i.e., 

c =  1 ( ~ Q  =0)  (6.23) 

tl Ma(8) makes extensive use of (6.23). 
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Since then R(z, ~') is a function of zr', all terms in the power series 
representation of (6.20) have equal power in ~ and ~' and a matrix of the 
coefficients in front of rPr 'k must be diagonal. We can also deduce from 
(6.21) that, for c =  1, Rfm = 0  unless p = k + m .  Consequently, in ET of 
degree r = 3, 4, 5, the quantities ml,, (3 ~< n ~< r, 3 ~< k ~< r, 3 ~< m ~< r) vanish - - k m  

altogether and, in spite of the basic result (5.2)-(5.3), potentially giving rise 
to nonlinear effects, the nonlinear terms in the constitutive representation 
(5.10) for Pn are of no importance. Thus, the gain in simplicity of 
mathematical consequences of the assumption (6.23) is offset by the 
possibility that the various constitutive coefficients derived may be inade- 
quate. 

This will not, however, be the case with "actual" molecules. In a 
slightly more general situation corresponding to 

O < c ~< 1 (6.24) 

we obtain by means of 

k = 0  " " 

(6.25) 

that the first few coefficients R p and R p are 

R~ 

R~ 

R~ 

R~ 

R~ 

R~ 

R~ 

R~ 

R~ 

R~ 

R~ 

R~ 

2 ~-" - - 7  

3 

0 

0 

4s 

~s 

4 

s 

0 

0 

~s 

(6.26) 

R~3 

R334 

R 3 3  

R~4 

R~4 

R~3 
- -  8 1  

0 

�89163 

�89163 

0 

0 

0 

4s 

(6.27) 

As elementary inspection shows, Eqs. (6.26)-(6.27) throw light on the 
values of p<n and o41, (3 ~< n ~< 4, 3 ~< k ~< 4, 3 ~< m ~< 4), but by themselves i k m  
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they do not give unambiguous information as to the constitutive represen- 
tation (5.10) for P~ in ET of degree r = 5, 6 ..... However, the complicated 
nature of the formulas (6.20)-(6.21) makes it difficult to predict from them 
the precise law of the c dependence of p~l, and P ~ :  only for sufficiently 
small values of r can definite predictions be made. 

We are now in a position to test independently the appropriateness of 
an intuitive observation of Section 5.2 concerning the sign of ~o in (5.12) 
and, accordingly, that of a in (5.11). In order to evaluate the rhs of (5.12), 
we return to Eqs. (4.15) and (6.8). It follows immediately that 

~,, A r [ n p r l  n - -  1 ~V30~ 3 k (6.28) 
n=3  ~ k  ~ m  3 k !  R,~ 

Within the framework of the simplifying assumption (6.23), the part ao 
of the entropy production a is then essentially positive, provided that the 
coefficients R~ for k = m are negative numbers. ~2 Insofar as an s factor 
much smaller than 1 is concerned, ao may also be expected to be essentially 
positive, because of the continuous f2 dependence of the coefficients R~m . 

7. FINAL R E M A R K S  

A further complication of the theory arises when three-dimensional 
simple gases are taken into account. Of course, results of similar form on 
actual such rarefied gases are familiar, (15) but in the older view they 
referred only to the particular systems of equations of transfer, possibly in 
various combinations. It seems to have been possible to construct ET of 
three-dimensional rarefied gases that avoids them. 

Still, a reliable formulation of extended theories is required for dense 
gases and fluids. Since in this more general case the advent of a finite size of 
molecules affects encounters considerably, it is doubtful whether a dis- 
cussion of constitutive functions that depend locally upon the state 
variables, such as was made in Section 3.2, is adequate in the present con- 
nection. A treatment of ET of fluids (gases), inspired by the so-called 
revised Enskog equation, has been attempted; this work, ~2~ however, is 
outside the scope of these investigations. 

12 In this context, see the matrix (6.26) with f2=O. 
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APPENDIX 

In this Appendix we summarize, for the convenience of the reader, 
useful identities concerning 

1 k 
~m k p "~p p X p y  m for m<~k 

4 _ = (A.1) Z m - -  

0 for m > k  

which are of great importance in deriving (4.13)-(4.19) from Eqs. 
(3.6)-(3.7). Taking (A.1), we readily find that 

m ! z  m ~ + k ! z  k''--mm!5~.~+~rn.1 rSk. m_2+�89 

-- 1 ( BRBkBm \/ (A.2) 

4+1 k ! ' m + l  z~,-1 4-1 m! z m + ~4 + mk!  + km!  z m 

= � 8 9  6k.+ 3 q- ~-m! (k-t- 1) 6k.m +1 -+- 3k! (m+  1) 6k.m ' +�89 6k.; 3 

= �89  " )  + 3 ( B 1 B k B m )  (A.3) 

for k/> 3, m ~> 3, and that 

k 2 k z 2 + ~  z o = 0  (A.4) 

Z~+2m = �89 6~o + (k + 1)(k + 2) 6,, ,]  (A.5) 

for k~>3, m = 0 ,  1,...; in Eqs. (A.2)-(A.3), the symbol 5k.,, denotes the 
Kronecker delta. 
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